
Supplementary Methods

1 The three medical datasets used for experiments

1.1 Mortality dataset
The mortality data was obtained from the National Health and Nutrition Examination Survey (NHANES I)
conducted by the U.S. Centers for Disease Control (CDC), as well as the NHANES I Epidemiologic Follow-up
Study (NHEFS) [14]. Raw tape-format data files were obtained from the CDC website and converted
to a tabular format by custom scripts. This reformatted version of the public data has been released at
http://github.com/suinleelab/treexplainer-study. NHANES I examined 23,808 individuals in the
United States between 1971 and 1974, recording a large number of clinical and laboratory measurements. The
NHANES I Epidemiologic Followup Study researched the status of the original NHANES I participants as of
1992 to identify when they had died, or alternatively when they were last known to be alive. After filtering
NHANES I to subjects that had both followup mortality data as well as common health measurements (such
as systolic blood pressure) we obtained 79 features for 14,407 individuals, of which 4,785 individuals had
recorded death dates before 1992. This data was used to train several cox proportional hazard ratio model
types (Section). Because NHANES I represents a cross section of the United States population, it is a classic
dataset that has been often used to understand the association between standard clinical measurements and
long term health outcomes [36, 18].

1.2 Chronic kidney disease dataset
The kidney dataset is from the Chronic Renal Insufficiency Cohort (CRIC) Study which follows individuals
with chronic kidney disease recruited from 7 clinical centers [35]. Participants are assessed at an annual visit
and study follow-up is ongoing. We joined both visit and person level attributes to create 333 features for
10,745 visits among 3,939 patients. For each visit, we determined if the patient progressed to ‘end-stage
renal disease’ within the following four years. (End-stage renal disease is the last stage of chronic kidney
disease when kidneys are functioning at 10-15% of their normal capacity; dialysis or kidney transplantation
is necessary to sustain life.) Predicting this progression outcome results in a binary classification task.
Understanding what leads some people with chronic kidney disease to progress to end-stage renal disease
while others do not is a priority in clinical kidney care that can help doctors and patients better manage
and treat their condition [45, 68, 66, 42]. In the United States chronic kidney disease affects 14% of the
population, so improving our management and understanding of the disease can have a significant positive
impact on public health [31].

1.3 Hospital procedure duration dataset
Our hospital’s operating rooms have installed an Anesthesia Information Management System - AIMS
(Merge AIMS, Merge Inc., Hartland, WI) that integrates with medical devices and other electronic medical
record systems to automatically acquire hemodynamic, ventilation, laboratory, surgery schedule and patient
registration data. The automatic capture of data is supplemented by the manual documentation of medications
and anesthesia interventions to complete the anesthesia record during a surgical episode. We extracted data
from the AIMS database from June 2012 to May 2016. The corresponding medical history data of each
patient were also extracted from our electronic medical record data warehouse (Caradigm Inc., Redmond,
WA). Patient and procedure specific data available prior to surgery were captured and summarized into
2,185 features over 147,000 procedures. These data consist of diagnosis codes, procedure types, location, free
text notes (represented as a bag of words), and various other information recorded in the EMR system. We
measured the duration of a procedure as the time spent in the room by the patient. This is an important
prediction task since one potential application of machine learning in hospitals is to reduce costs by better
anticipating procedure duration (and so improve surgery scheduling). When hospital scheduling systems
depend on machine learning models it is important to monitor the ongoing performance of the model. We
demonstrate in the main text results how local explanations can significantly improve the process of monitoring
this type of model deployment.

1

2 Model accuracy performance experiments
Modern gradient boosted decision trees often provide state-of-the-art performance on tabular style datasets
where features are individually meaningful, as consistently demonstrated by open data science competitions
[20, 10]. All three medical datasets we examine here represent tabular-style data, and gradient boosted
trees achieve the highest accuracy across all three datasets (Figure 2A). We use 100 random train/test splits
followed by retraining to assess the statistical significance of the separation between methods. In the mortality
dataset, gradient boosted trees outperform the linear lasso with a P-value < 0.01 and the neural network with
a P-value of 0.03. In the chronic kidney disease dataset, gradient boosted trees outperform the linear lasso
with a P-value < 0.01 and the neural network with a P-value of 0.08. In the hospital procedure duration
dataset, gradient boosted trees outperform both the linear lasso and neural network with a P-value < 0.01.
The details of how we train each method and obtain the results in Figure 2A are presented below.

2.1 Mortality dataset
For NHANES I mortality prediction in Figure 2A, we use a cox proportional hazards loss, and a C-statistic
[24] to measure performance. For each of the three algorithms we split the 14, 407 samples according to a
64/16/20 split for train/validation/test. The features for the linear and the neural network models are mean
imputed and standardized based on statistics computed on the training set. For the gradient boosted tree
models, we pass the original data unnormalized and with missing values.

Gradient Boosted Trees - Gradient boosted trees are implemented using an XGBoost [10] model with the
cox proportional hazards objective (we implemented this objective and merged it into XGBoost to support
the experiments in this paper). Hyper-parameters are chosen using coordinate descent on the validation set
loss. This results in a learning rate of 0.001; 6, 765 trees of max depth 4 chosen using early stopping; `2
regularization of 5.5; no `1 regularization; no column sampling during fitting; and bagging sub-sampling of
50%.

Linear Model - The linear model for the mortality dataset is implemented using the lifelines Python package
[16]. The `2 regularization weight is chosen using the validation set and set to 215.44.

Neural Network - The neural network model is implemented using the DeepSurv Python package [29].
Running DeepSurv to convergence for mortality data takes hours on a modern GPU server, so hyper-
parameter tuning is done by manual coordinate decent. This results in `2 regularization of 1.0; the use of
batch normalization; a single hidden layer with 20 nodes; a dropout rate of 0.5; a learning rate of 0.001 with
no decay; and momentum of 0.9.

2.2 Chronic kidney disease dataset
For CRIC kidney disease prediction, we use logistic loss for binary classification, and measure performance
using the area under the precision-recall curve in Figure 2A. For each of the three algorithms we split the
10, 745 samples according to a 64/16/20 split for train/validation/test. The features for the linear and the
neural network models are mean imputed and standardized based on statistics computed on the training set.
For the gradient boosted tree models we pass the original data unnormalized and with missing values.

Gradient Boosted Trees - Gradient boosted trees are implemented using an XGBoost [10] model with the
binary logistic objective function. Hyper-parameters are chosen using coordinate descent on the validation set
loss. This results in a learning rate of 0.003; 2, 300 trees of max depth 5 chosen using early stopping; no `2
regularization; no `1 regularization; a column sampling rate during fitting of 15%; and bagging sub-sampling
of 30%.

Linear Model - The linear model for the kidney dataset is implemented using scikit-learn [47]. Both `1 and
`2 regularization are tested and `1 is selected based on validation set performance, with an optimal penalty
of 0.1798.

2

Neural Network - The neural network model is implemented using Keras [12]. We choose to explore various
feed-forward network architectures as well as 1D convolution based kernels (that learn a shared non-linear
transform across many features). The best performance on the validation data comes from a 1D convolution
based architecture. After coordinate descent hyper-parameter tuning, we choose 15 1D convolution kernels
which then go into a layer of 10 hidden units with rectified linear unit activation functions. Dropout of 0.4 is
used during training between the convolution kernels and the hidden layer, and between the hidden layer and
the output. Because stochastic gradient descent can have varying performance from run to run, we choose
the best model based on validation loss from 10 different optimization runs.

2.3 Hospital procedure duration dataset
For hospital procedure duration prediction, we use a squared error loss and measure performance by the
coefficient of determination (R2) in Figure 2A. Two different hospital procedure dataset splits are used in
this paper. The first dataset split, used for model comparison in Section (Figure 2A), consists of 147,000
procedures divided according to a random 80/10/5/5 split for train/validation/test1/test2. The test2 set is
only used to get final performance numbers and not during method development. The features for the linear
and the neural network models are mean imputed and standardized based on statistics computed on the
training set. For the gradient boosted tree models, we pass the original data unnormalized and with missing
values. All hyper-parameter tuning is done with the validation dataset.

The second dataset split, used for the monitoring plots, divides procedures from the two hospitals based
on time: the first 1 year of data is used for training and the last 3 years is used for test, in a manner intended
to simulate actual model deployment. Models for this data are not hyper-parameter tuned, as the goal is not
to achieve perfect performance but to demonstrate the value of monitoring methods; instead, they simply use
the best hyper-parameter values found on the first (random-splits) dataset.

Gradient Boosted Trees - Gradient boosted trees are implemented using an XGBoost [10] model with
a squared loss objective function. Hyper-parameters are chosen using grid search over the validation set
loss. This results in a learning rate of 0.1; 530 trees of max depth 10 chosen using early stopping; a column
sampling rate during fitting of 50%; and no bagging sub-sampling.

Linear Model - The linear model for the procedure duration dataset is implemented using the LassoCV
class in scikit-learn [47]. `1 regularization is tuned based on validation set performance to 0.120.

Neural Network - The neural network model is implemented using Keras [12]. We limit our architecture
search to feed-forward networks with up to three hidden layers, and sizes up to 4,096 nodes per layer. The
best performance on validation data comes from a single-hidden-layer architecture with a 1,024-node layer
followed by a dropout probability of 0.75 before the output.

3 Interpretability comparison of linear models and tree-based mod-
els in the presence of non-linearities

Even if linear models appear easier to interpret, their high bias may force the relationships they learn to be
farther from the truth than a low-bias tree-based model (Figures 2B-D). We illustrate this using simulated
outcomes from the NHANES I mortality dataset with varying amounts of non-linearity between certain
features and the outcome. We use a random set of 10189 patients from NHANES-I, and 118 features. No
rows or columns are dropped out due to missingness or unclean data. The data are standardized and missing
values are mean-imputed. Even if the simulated outcome only depends on age and body mass index (BMI),
the linear model learns features in the mortality dataset that are non-linearly dependent with age and BMI to
try to approximate non-linear relationships with the outcome. This increases the test accuracy of the linear
model slightly, as seen by the small increase in performance from the two-feature linear model (dashed red)
to the all-feature linear model (solid red) (Figure 2C). However, this comes at the cost of placing much of its
weight on features that are not actually used to generate the outcome. In contrast, the gradient boosted
tree model correctly uses only age and BMI across all levels of function non-linearity (Figure 2D). Below we
describe the experimental setup behind the results in Figure 2B-D.

3

3.1 Selection of features
We generate a synthetic label with a known relationship to two input features from the mortality dataset,
but to the extent possible, we intend this synthetic relationship to be realistic; while still retaining the ability
to control the amount of non-linearity in the relationship. Starting with the classifiers trained on the full
mortality (NHANES I) dataset, SHAP dependence plots are used to find one feature that has a strong linear
relationship with mortality (age) and one that has a “U-shaped” relationship with mortality (BMI). These
two features are selected and used as the “true” label-generating features in our synthetic model.

3.2 Label generation
The synthetic label-generating function is constructed using a logistic function applied to the sum of a linear
function of age and a quadratic function of BMI. The functional form allows us to smoothly vary the amount
of nonlinearity in the label-generating model. The quadratic function of BMI is parameterized as (1 − p)
times a linear function, plus p times a quadratic function, where both functions have the same minimum and
maximum values (the x-location of the minimum for the quadratic is set to the mean BMI). The contribution
in logits is set to range from a minimum of -2.0 to a maximum of 2.0 for age, and -1.0 to 1.0 for BMI, so that
even when nonlinear contributions are the strongest (p = 1) the linear contribution of the main risk factor is
still more important (as is true in the original data). The output for each data point is then a probability to
be predicted by our models (we do not add noise by binarizing these probabilities to 0-1, so as to avoid the
need to average our results over many random replicates). Thus the final label-generating model is

y = σ
(
(1.265(age) + 0.0233) + (1− p)(0.388(BMI)− 0.325) + (p)(1.714(BMI)2 − 1)

)
where σ = 1

1+e−t is the logistic function. A total of 11 datasets are generated, with p ∈ [0.0, 0.1, 0.2...1.0], by
applying this labeling function to the true data covariates, so that the matrix of predictors X is real data but
the labels y are generated synthetically by a known mechanism.

3.3 Model training
We train both gradient boosted trees and linear logistic regression to predict the synthetic labels. For
each of the 11 datasets with varying degrees p of nonlinearity, models are tuned on a validation set and
evaluated on test data with a 6000/1500/2689 patient train/validation/test split. Logistic regression is
unregularized in the experiments shown in the main text; in Supplementary Figures 2 and 3 we show that
the same pattern of results hold when an L1 regularization penalty is tuned on validation data over the range
λ ∈ [10−10, 10−9...103, 104] . The tuned gradient boosting model hyper-parameters are optimized over the
tree depths of [1, 2, 4, 8, 10] and bagging sub-sampling over the rates [0.2, 0.5, 0.8, 1.0]. The learning rate is
fixed at 0.01; the minimum loss reduction for splitting is 1.0; the minimum child weight for splitting is 10;
and we train for a maximum of 1, 000 rounds with 10-round early stopping based on validation set loss.

3.4 Feature importance
Per-sample importance values are calculated for each feature in each of the 11 datasets using SHAP values
for both the logistic (using Linear SHAP values assuming feature independence [39]) and gradient boosted
tree (using TreeExplainer’s Tree SHAP algorithm) models. At each value of p, the total weight of irrelevant
features is calculated by taking the absolute value of all SHAP values for all features other than age and
BMI, and summing these values across all samples and features.

4 Convergence experiments for model agnostic Shapley value ap-
proximations

In Supplementary Figures 4C-D we generated random datasets of increasing size and then explained (over)fit
XGBoost models with 1,000 trees. The runtime and standard deviation of the local explanations are reported
for Kernel SHAP [39], IME [64], and TreeExplainer; except that for Kernel SHAP and IME the reported

4

times are only a lower bound. Both the IME and Kernel SHAP model-agnostic methods must evaluate the
original model a specific number of times for each explanation, so the time spent evaluating the original
model represents a lower bound on the runtime of the methods (note that the QII method [15] is not included
in our comparisons since for local feature attribution it is identical to IME). In Supplementary Figure 4C
we report this lower bound, but it is important to note that in practice there is also additional overhead
associated with the actual execution of the methods that depends on how efficiently they are implemented.
We also only used a single background reference sample for the model-agnostic approaches. This allows them
to converge faster at the expense of using less accurate estimates of conditional expectations. Increasing the
number of background samples would only further reduce the computational performance of these methods.
Each method is run ten times, then the standard deviation for each feature is divided by the mean of each
feature to get a normalized standard deviation (Supplementary Figure 4D). In order to maintain a constant
level of normalized standard deviation, Kernel SHAP and IME are allowed a linearly increasing number of
samples as the number of features in a dataset, M , grows. In Supplementary Figure 4C, TreeExplainer is so
much faster than the model-agnostic methods that it appears to remain unchanged as we scale M , though in
reality there is a small growth in its runtime. In Supplementary Figure 4D there is truly no variability since
the TreeExplainer method is exact and not stochastic.

In Supplementary Figures 4E-F, the different explainers are compared in terms of estimation error
(absolute deviation from the ground truth) on the chronic kidney disease dataset. We chose this dataset model
for our comparisons because it is much smaller than the hospital procedure duration dataset, and has a more
common loss function than the mortality dataset model (logistic loss vs. a cox proportional hazards loss).
Ground truth is obtained via TreeExplainer’s exact Independent Tree SHAP algorithm with the reference set
fixed to be the mean of the data. The plots are obtained by increasing the number of samples allowed to
each explainer and reporting the max and mean estimation error. For IME, we tune the minimum samples
per feature, a hyper-parameter that is utilized to estimate which features’ attributions have larger variability.
After the minimum samples per feature has been achieved, the rest of the samples are allocated so as to
optimally reduce the variance of the sum of the estimated values (by giving more samples to features with
high sampling variance). As expected this is beneficial to the max evaluation error, but can potentially lead
to bias (as for IME (min 10) in Supplementary Figure 4E). While often helpful, `1 regularization was not
useful to improve Kernel SHAP for this dataset, so we report the results from unregularized regression.

To measure the cost of computing low variance estimates of explanations for the chronic kidney disease
dataset we defined “low variance” as 1% of the tenth largest feature impact (out of 333 features), then
measured how many samples it took on average to reach a standard deviation below that level (where
standard deviation is measured across repeated runs of the explanation method). This was done for both
the maximum standard deviation across all features (Supplementary Figure 4E), and the mean standard
deviation (Supplementary Figure 4F). Calculating low variance estimates for the experiments presented in
this paper on the chronic kidney disease dataset would have taken almost 2 CPU days for basic explanations,
and over 3 CPU years for interaction values.

5 Additional properties of SHAP values
In addition to the three properties described in the main text, SHAP values also satisfy several previously
proposed properties of good explanation methods:

• Implementation invariance, which states that the explanation of a model should only depend on the
behavior of the model and not how it is implemented [65]. This is a desirable property since if two
models behave identically across all inputs, then it natural that they should get identical explanations
of their behavior. SHAP values satisfy this property since Equation 4 only depends on the model’s
behavior and not on any implementation details.

• Linearity, which states that a joint model made by linearly combining two other models on the same
inputs should have explanations that are the same linear combination of the explanations of each of the
constituent models [64]. SHAP values follow linearity as it is a well-known property of Shapley values
[58].

5

• Sensitivity-n, which is a metric for which Shapley values provide a justifiable (in a sense optimal)
solution [1]. Sensitivity-n measures how well a set of feature attribution values can represent the effect
on the model’s output of masking a random set of n features. For complex functions, no method can
perfectly represent all high order effects by summing feature attribution effects, but Shapley values
provide a principled way to pick a solution. This is because Shapley values are the only solution that is
both consistent (Property 2), and locally accurate (meaning the values sum to the model’s output when
all features are included).

• Explanation continuity, which states that for continuous models, small changes in the input should lead
to small changes in the explanation [44]. SHAP values satisfy this because they are a linear function of
the model’s output, and hence if the underlying model is continuous, the SHAP values will be also.
Note that for TreeExplainer this property is typically not applicable since tree-based models are not
continuous.

6 Evaluation metrics for benchmark

6.1 Runtime
Runtime is reported as the time to explain 1,000 predictions. For the sake of efficiency the runtime for each
explanation method was measured using 100 random predictions, and then scaled by 10 to represent the time
to explain 1,000 predictions. Both the initialization time of each method and the per-prediction time was
measured, and only the per-prediction time was scaled.

6.2 Local accuracy
Local accuracy strictly holds only when the sum of the attribution values exactly sum up from some constant
base value to the output of the model for each prediction (Property 1). This means Ex[(f(x)−

∑
i φi)

2] = 0.
But to also capture how close methods come to achieving local accuracy when they fail, we compute the
normalized standard deviation of the difference from the model’s output over 100 samples

σ =

√
Ex[(f(x)−

∑
i φi)

2]√
Ex[f(x)2]

(1)

then define nine cutoff levels of σ for reporting a positive score between 0 and 1:

σ < 10−6 =⇒ 1.00 (2)

10−6 ≤ σ < 0.01 =⇒ 0.90 (3)
0.01 ≤ σ < 0.05 =⇒ 0.75 (4)
0.05 ≤ σ < 0.10 =⇒ 0.60 (5)
0.10 ≤ σ < 0.20 =⇒ 0.40 (6)
0.20 ≤ σ < 0.30 =⇒ 0.30 (7)
0.30 ≤ σ < 0.50 =⇒ 0.20 (8)
0.50 ≤ σ < 0.70 =⇒ 0.10 (9)

6.3 Consistency guarantees
Consistency guarantees are a theoretical property of an explanation method that ensure pairs of cases will
never be inconsistent (Property 2). We broke agreement with this property into three different categories: an
exact guarantee, a guarantee that holds in the case of infinite sampling, and no guarantee. Note that while
inconsistency could be tested computationally, it would require enumerating a search space exponential in
the number of input features, which is why we chose to directly report the theoretical guarantees provided by
different methods.

6

6.4 Keep positive (mask)
The Keep Positive (mask) metric measures the ability of an explanation method to find the features that
increased the output of the model the most. For a single input the most positive input features are kept
at their original values, while all the other input features are masked with their mean value. This is done
for eleven different fractions of features ordered by how positive an impact they have as estimated by the
explanation method we are evaluating (those that have a negative impact are always removed and never kept).
Plotting the fraction of features kept vs. the model output produces a curve that measures how well the local
explanation method has identified features that increase the model’s output for this prediction. Higher valued
curves represent better explanation methods. We average this curve over explanations of 100 test samples
for 10 different models trained on different train/test splits. To summarize how well an explanation method
performed we take the area under this curve. Masking features and observing their impact on a model’s
output is a common method for assessing local explanation methods [1, 39, 59]. An example plot of this
metric for a random forest model of the chronic kidney disease model is available in Supplementary Figure 21.

6.5 Keep positive (resample)
The Keep Positive (resample) metric is similar to the Keep Positive (mask) metric, but instead of replacing
hidden features with their mean value, this resample version of the metric replaces them with values from
a random training sample. This replacement with values from the training dataset is repeated 100 times
and the model output’s are averaged to integrate over the background distribution. If the input features are
independent then this estimates the expectation of the model output conditioned on the observed features. The
mask version of this metric described above can also be viewed as approximating the conditional expectation
of the model’s output, but only if the model is linear. The resample metric does not make the assumption
of model linearity. An example plot of this metric for a random forest model of the chronic kidney disease
model is available in Supplementary Figure 22.

6.6 Keep negative (mask)
The Keep Negative (mask) metric measures the ability of an explanation method to find the features that
decreased the output of the model the most. It works just like the Keep Positive (mask) metric described above,
but keeps the most negative impacting features as computed by the explanation method (Supplementary
Figure 23).

6.7 Keep negative (resample)
The Keep Negative (resample) metric measures the ability of an explanation method to find the features
that decreased the output of the model the most. It works just like the Keep Positive (resample) metric
described above, but keeps the most negative impacting features as computed by the explanation method
(Supplementary Figure 24).

6.8 Keep absolute (mask)
The Keep Absolute (mask) metric measures the ability of an explanation method to find the features most
important for the model’s accuracy. It works just like the Keep Positive (mask) metric described above, but
keeps the most important features as measured by the absolute value of the score given by the explanation
method (Supplementary Figure 25). Since removing features by the absolute value of their effect on the
model is not designed to push the model’s output either higher or lower, we measure not the change in the
model’s output, but rather the change in the model’s accuracy. Good explanations will enable the model to
achieve high accuracy with only a few important features.

6.9 Keep absolute (resample)
The Keep Absolute (resample) metric measures the ability of an explanation method to find the features most
important for the model’s accuracy. It works just like the Keep Absolute (mask) metric described above, but

7

uses resampling instead of mean masking (Supplementary Figure 26).

6.10 Remove positive (mask)
The Remove Positive (mask) metric measures the ability of an explanation method to find the features that
increased the output of the model the most. It works just like the Keep Positive (mask) metric described
above, but instead of keeping the most positive features, it instead removes them, which should lower the
model output (Supplementary Figure 27). This metric is conceptually similar to the sequential masking
metric used by Fong and Vedaldi to sequentially hide features that raise the probability of a specific output
class [19].

6.11 Remove positive (resample)
The Remove Positive (resample) metric measures the ability of an explanation method to find the features
that increased the output of the model the most. It works just like the Keep Positive (resample) metric
described above, but instead of keeping the most positive features, it instead removes them, which should
lower the model output (Supplementary Figure 28).

6.12 Remove negative (mask)
The Remove Negative (mask) metric measures the ability of an explanation method to find the features that
decreased the output of the model the most. It works just like the Keep Negative (mask) metric described
above, but instead of keeping the most negative features, it instead removes them, which should raise the
model output (Supplementary Figure 29).

6.13 Remove negative (resample)
The Remove Negative (resample) metric measures the ability of an explanation method to find the features
that decreased the output of the model the most. It works just like the Keep Negative (resample) metric
described above, but instead of keeping the most negative features, it instead removes them, which should
raise the model output (Supplementary Figure 30).

6.14 Remove absolute (mask)
The Remove Absolute (mask) metric measures the ability of an explanation method to find the features
most important for the model’s accuracy. It works just like the Keep Absolute (mask) metric described
above, but instead of keeping the most important features, it instead removes them, which should lower the
model’s performance (Supplementary Figure 31). This metric is equivelant to the perterbation metric used by
Samek et al. to sequentially hide important features [55], and the explanation selectivity property described
in Montavon, Samek, and Müller [44].

6.15 Remove absolute (resample)
The Remove Absolute (resample) metric measures the ability of an explanation method to find the features
most important for the model’s accuracy. It works just like the Keep Absolute (resample) metric described
above, but instead of keeping the most important features, it instead removes them, which should lower the
model’s performance (Supplementary Figure 32).

7 User study experiments
Here we explore how consistent different attribution methods are with human intuition. While most complex
models cannot be easily explained by humans, very simple decision trees can be explained by people. This
means we can run user study experiments that measure how people assign credit to input features for simple
models that people understand, then compare people’s allocations to allocations given by different local

8

explanation methods. If an explanation method gives the same result as humans, then we say that method is
consistent with human intuition.

To test human intuition, we use four simple models and ask 33 english speaking individuals in the U.S. on
Amazon Mechanical Turk to explain three different samples for each model. Each model is a simple depth-two
decision tree that only depends on two binary features. To make the model more approachable we called the
model a “sickness score,” and used three binary input features: fever, cough, and headache. The models we
used were: AND, OR, XOR, and SUM (study participants were not told these names). The headache feature
was never used by any of the models. The fever and cough features always each contributed a linear effect of
+2 when they were on, but for models other than SUM there were also non-linear effects. For AND +6 was
given when both features were true. For OR +6 was given when either feature was true. For XOR +6 was
given when either feature was true but not both. For each model we explained three samples: 1) fever false,
cough false, headache true; 2) fever false, cough true, headache true; and 3) fever true, cough true, headache
true.

Users were asked to allocate blame for a sickness score output value among each of the three input
features. No constraints were placed on the input fields used to capture user input, except that the fields
were not left blank when there was a non-zero sickness score. This experiment resulted in twelve different
consensus credit allocations (Supplementary Figures 33-36). We then took these twelve consensus credit
allocations and used them as ground truth for twelve metrics. Each metric is the sum of the absolute
differences between the human consensus feature attribution and attribution given by an explanation method
(Supplementary Figures 37-39). Note that we used a healthy population with independent input features
as the background reference dataset (the background is used for computing conditional expectations by
the explanation methods). Python implementations of these study scenarios are available online https:
//github.com/suinleelab/treeexplainer-study. Results are provided in Supplementary Results Section
7.1

7.1 User Study Results
The results of the user study show that all the local explanation methods based on Shapley values agree with
the human consensus feature attribution values across all twelve cases. However, the heuristic Saabas method
differs significantly from the human consensus in several of the nonlinear cases (Supplementary Figure 8). Not
only do Shapley values have attractive theoretical guarantees, and strong quantitative performance (Figure 3),
but these experiments show they also match human intuition on small example models (Supplementary
Figure 8). Performance plots for all user study results are also available in Supplementary Data 1.

Supplementary Results

1 Prevalence of tree-based machine learning models
Here we seek to quantify how prevalent tree-based machine learning models are in health care, industry, and
academia. First, we use the Kaggle “State of ML and Data Science” 2017 survey [28] to understand the relative
importance of different methods in health care, industry, academia, and other fields (Supplementary Figure
18). This study surveyed over 16,000 people who used machine learning in their jobs and measured, among
other things, the percentage of respondents who used various data science methods. Note that the percentages
do not add to 100 percent because respondents may use multiple methods and because some methods are
specific sub-types of other methods. We filter to focus on survey results from the 2,039 respondents who
self-identified as “data scientists” and had provided information on the methods they used. In particular, we
examine model usage across all data scientists as well as in the specific fields of pharmaceuticals, marketing,
finance, insurance, and academia. These fields had 31, 107, 265, 74, and 102 data scientist respondents,
respectively. Overall, tree-based methods are the most popular non-linear methods, representing four of the
five most popular nonlinear models across all fields. No nonlinear model is more popular than random forests
and decision trees in any field we examine. The third most popular nonlinear models are gradient boosting
machines in finance and insurance, ensemble methods in marketing, Bayesian techniques in academia, and
neural networks in pharmaceuticals. Ensemble methods are the third most popular nonlinear methods overall.

9

The lowest prevalence of trees occurs in academia, where the prevalence of Bayesian techniques and neural
networks correspondingly increases.

We also investigate data science methods in an academic health care setting. To do this, we compile
all articles published in npj Digital Medicine between January 1 and September 1 in 2019 and determine
which methods they used. Out of all 58 articles, we select the 28 that used any kind of predictive model,
and count the dataset types and model types used in each article. Four articles use multiple dataset types
and are included in the counts for each dataset type. Models that are not linear, tree, or deep models are
grouped together as “other”. We do not filter or rank models by predictive performance. The results are
plotted in Supplementary Figure 19. The height of each bar is the total number of articles using a particular
dataset type, and the shaded areas within each bar represent the proportion of papers using the given dataset
type that also used a particular model type. The shading is normalized such that models from a paper that
uses 5 different model types only count one-fifth as much as those from a paper that uses a single model
type. Within articles that use a predictive model, images and tabular data are the most popular data type.
Both are substantially more popular than time series, the next most popular data type. Both trees and deep
models are used on image, tabular, and time series data, but deep models are much more common than trees
on image data and trees were much more common than deep models on tabular data. Papers utilizing time
series data are equally likely to use tree models and deep models.

Overall, our survey of the field concludes that tree-based methods are widespread in a variety of fields,
from health care to academia to industry.

2 Previous Global Explanation Methods for Trees
While local explanation methods for trees have not been extensively studied, interpreting tree-based models
by assigning a global importance value to each input feature is a well studied problem and many methods
have been proposed [21, 20, 56, 62, 63, 26, 2, 38, 30]. The most basic global approach is to simply count the
number of times a feature was used for splitting, but this fails to account for the differing impacts of different
splits. A better approach is to attribute the reduction in loss (aka. Gain) provided by each split in each
decision tree to the feature that was split on [8, 21]. This “Gain” measure of feature importance was shown to
correctly recover the mutual information between the input features and the outcome label in the limit of an
infinite ensemble of totally random fully developed trees [38]. However, it becomes biased for finite ensembles
of greedily built trees, and so approaches have been designed to account for this bias when using Gain for
feature selection [25, 9]. Another popular method for determining feature importance is to permute the data
column corresponding to a feature and then observe the change in the model’s loss [7]. If the model’s loss
increases significantly when a feature is permuted then it indicates the model was heavily depending on that
feature. This permutation approach can be further extended to account for statistical dependencies between
features by permuting only within specified groups of samples [63]. All of these approaches are designed to
estimate the global importance of a feature over an entire dataset, so they are not directly applicable to
local explanations that are specific to each prediction. If we try to use global methods in place of true local
explanations we get significantly worse performance on many benchmark metrics (Figure 3).

While not explicitly designed to be a global feature attribution method, TreeExplainer can be used as a
global method by averaging many local explanations. If we do this over all samples in a dataset, then we
get a global measure of feature importance that does not suffer from the inconsistencies of the classic Gain
method (Supplementary Figure 5), and unlike the permutation method, does not miss high-order interaction
effects. Global feature attribution based on TreeExplainer has a higher power to detect important features
in the presence of interactions than current state-of-the-art methods (Supplementary Figure 9). This has
important implications for the popular task of feature selection based on tree-ensembles.

3 Previous local explanation methods for trees
To our knowledge, there are only two previous tree-specific local explanation methods: reporting the decision
path; and an unpublished heuristic difference in expectations method (proposed by Saabas) [54]. Since
reporting the decision path is not useful for large tree ensembles we instead focus on the heuristic Saabas
method. The Saabas difference in expectations approach explains a prediction by following the decision path

10

and attributing changes in the expected output of the model to each feature along the path. This is efficient
since the expected value of every node in the tree can be estimated by averaging the model output over all
the training samples that pass through that node. Let f be a decision tree model, x the instance we are going
to explain, f(x) the output of the model for the current instance, and fx(S) ≈ E[f(x) | xS] the estimated
expectation of the model output conditioned on the set S of feature values (, Algorithm 1), then we can
define the Saabas value for the i’th feature as

φsi (f, x) =
∑
j∈Di

x

fx(Aj ∪ j)− fx(Aj), (10)

where Di
x is the set of nodes on the decision path from x that split on feature i, and Aj is the set of all

features split on by ancestors of j. Equation 10 results in a set of feature attribution values that sum up to
the difference between the expected output of the model and the output for the current prediction being
explained (Supplementary Figure 15). When explaining an ensemble model made up of a sum of many
decision trees, the Saabas values for the ensemble model are defined as the sum of the Saabas values for each
tree.

3.1 Unifying previous heuristics with Shapley values
In this section, we aim to unify previous heuristic methods with the Shapley values. For a more in-depth
discussion of the Shapley values, please refer to Supplementary Section .

Surprisingly, there is a close parallel between the Saabas values (Equation 10) and the SHAP values
(Equation 4). While SHAP values average the importance of introducing a feature into a interventional
expectation E[f(X) | do(XS = xS)] [27] over all possible feature orderings, Saabas values only consider the
single ordering defined by a tree’s decision path (Supplementary Figure 15). This means that Saabas values
satisfy the local accuracy property since they always sum up to the difference between the expected value of
the model E[f(x)] and the current output f(x). But since they do not average over all orderings they do not
match the SHAP values, and so must violate consistency. Examples of such inconsistencies can be found
for even very small trees, where changing the model to depend more on one feature can actually cause the
Saabas attribution values for that feature to decrease (Supplementary Figure 5). The difference this makes
can be seen by examining trees representing multi-way AND functions. If we let all the input features be
independent and identically distributed then no feature in an AND function should have any more credit
than another, yet for Saabas values, splits near the root are given much less credit than splits near the leaves
(Supplementary Figures 4A). This means that while mathematically all the features play an equal role in
the model, the features near the root of the tree get little or no credit. This is particularly troubling since
features near the root are likely the most important as they were chosen first by greedy splitting.

There is a close parallel between Saabas values and the classic “Gain” method for global feature attribution
(sometimes known as Gini importance) [21]. Just as Gain attributes the change in loss after each split to
the feature that was split on, so Saabas attributes the change in conditional expectation after each split to
the feature that was split on. Both methods only consider a single order for introducing features into the
model, the order defined by paths in the tree. Choosing to use only a single ordering leads to inconsistent
allocation of credit (Supplementary Figures 4A and 5). Shapley values guarantee a consistent allocation
of credit by averaging the change after each split over all possible orderings. It has been previously shown
through a connection with mutual information (which is consistent) that the Gain method becomes consistent
in the limit of an infinite ensemble of totally random fully developed trees [38]. This suggests that the Saabas
method may also become consistent in the limit of an infinite ensemble of totally random fully developed
trees. This is indeed the case:

Theorem 1. In the limit of an infinite ensemble of totally random fully developed trees on binary features the
Saabas values equal the SHAP values [39] (where conditional expectations are computed using path expectations
as in Algorithm 1).

Proof. Assume all features are binary, then the decision path of a single input instance x for a single tree
will be a random ordering of all the input features. The Saabas values for that tree will be equivalent to a
single permutation from the formula for Shapley values (Equation 4). Since there is an infinite ensemble of

11

trees, all possible feature orderings will be represented in equal proportions. Given a finite output domain,
there will furthermore be all possible feature orderings represented for each possible leaf value. Taking the
average of the Saabas values over the ensemble of trees then becomes the same as the averaging function in
the definition of the Shapley values (Equation 4).

4 Model agnostic local explanation methods
Many different local explanation methods have been proposed in the literature [4, 64, 51, 15, 39, 50]. The
most well known is simply taking the gradient of the model’s output with respect to its inputs at the current
sample. This is common in the deep learning literature, as is the related approach of multiplying the gradient
times the value of the input features. Relying entirely on the gradient of the model at a single point though
can often be misleading [59]. To provide a better allocation of credit for deep learning models, various
methods have been proposed that either modify the standard gradient back propagation rule to instead
propagate attributions [61, 69, 3, 59, 33, 1], or integrate the gradient along a path based on fair allocation
rules from economics [65].

In contrast to deep learning methods, model-agnostic methods make no assumptions about the internal
structure of the model. These methods rely only on observing the relationship between changes in the model
inputs and model outputs. This can be done by training a global mimic model to approximate the original
model, then locally explaining the mimic model by either taking its gradient [4], or fitting a local linear
model as in MAPLE [49]. Alternatively, the mimic model can be fit to the original model locally for each
prediction. For a local linear mimic model the coefficients can be used as an explanation, as in the popular
LIME method [51]. For a local decision rule mimic model the rules can be used as the explanation as in
Anchors [50]. Another class of approaches do not explicitly fit a mimic model, but instead perturb sets of
features to measure their importance, then use methods from game theory to fairly allocate the importance
of these sets among the input features, this class includes IME [64] and QII [15].

Perhaps surprisingly, despite the seeming variety of different local explanation methods, two back
propagation-style deep learning methods [3, 59], local linear mimic models [51], and several game theoretic
methods [37, 64, 15] were recently unified into a single class of additive feature attribution methods in our
prior study [39]. This class is of particular interest since results from cooperative game theory imply there
is a unique optimal explanation approach in the class (the Shapley values) that satisfies several desirable
properties [58, 53]. Unfortunately computing the Shapley values is NP-hard in general [41], with a runtime
cost exponential in the number of input features. When faced with an NP-hard optimization problem it is
typical to build approximate methods, which exactly IME [64] or QII [15] do. However, here we take an
alternative approach and restrict our focus specifically to tree-based machine learning models. By doing this
we are able to show constructively that solving for the exact Shapley values in trees is not NP-hard, and can
be solved by TreeExplainer in low-order polynomial time ().

5 Model summarization experiments
Here, we describe in more detail the model summarization results. One of the most basic ways to understand a
model is to display the global importance of each feature, often as a bar chart (Figure 4A left). For tree-based
models such as gradient boosted trees a basic operation supported by any implementation is providing the
total “Gain” over all splits for a feature as a global measure of feature importance [21]. Computing SHAP
values across a whole dataset, we can improve on this basic task of displaying global feature importance in
two ways: 1) By averaging the SHAP values across a dataset, we can get a single global measure of feature
importance that retains the theoretical guarantees of SHAP values. This avoids the troubling inconsistency
problems of the classic Gain method (Supplementary Figure 5), and also provides better global feature
selection power than either Gain or permutation testing (Supplementary Figure 9). This is particularly
important since tree-based models are often used in practice for feature selection [22, 46]. 2) A limitation
of traditional global explanations for trees is that reporting a single number as the measure of a feature’s
importance conflates two important and distinct concepts: the magnitude of an effect, and the prevalence of
an effect. By plotting many local explanations in a beeswarm-style SHAP summary plot we can see both the

12

magnitude and prevalence of a feature’s effect (Figure 4A right), and by adding color, we can also display the
effect’s direction.

The value of summary plots based on many local explanations is illustrated in Figure 4A for the NHANES
I mortality dataset, where an XGBoost cox proportional hazards model was trained using hyper-parameters
optimized on a validation dataset (2), its predictions were explained using TreeExplainer, and then compiled
into a summary plot. On the left of Figure 4A is a familiar bar-chart, not based on a typical heuristic global
measure of feature importance, but on the average magnitude of the SHAP values. On the right of Figure 4A
is a set of beeswarm plots where each dot corresponds to an individual person in the study. Each person has
one dot for each feature, where the position of the dot on the x-axis corresponds to the impact that feature
has on the model’s prediction for that person (as measured by the prediction’s SHAP value for that feature).
When multiple dots land at the same x position they pile up to show density.

Unsurprisingly, the dominating factor for risk of death in the U.S. in the 1970s (which is when the
NHANES I data was collected) is age. By examining the top row of the summary plot we can see that a high
value for the age feature (red) corresponds to a large increase in the log hazard ratio (i.e., a large positive
SHAP value), while a low value for age (blue) corresponds to a large decrease in the log hazard ratio (i.e.,
a large negative SHAP value). The next most important feature for mortality prediction is sex, with men
having about a 0.6 increase in log-hazards relative to women, which corresponds to about 7 years of change
in the age feature. Interestingly, the impact of being a man vs. woman on the model’s output is not constant
across individuals, as can be seen by the spread of the blue and red dots. The differences of effect within the
same sex are due to interactions with other features in the model that modulate the importance of sex for
different individuals (we explore this in more detail in 6).

An important pattern in the mortality data revealed by the summary plot, but not by classic global
feature importance, is that features with a low global importance can still be some of the most important
features for a specific person (Figure 4A). Blood protein, for example, has a low global impact on mortality,
as indicated by its small global importance (Figure 4A left). However, for some individuals, high blood
protein has a very large impact on their mortality risk, as indicated by the long tail of red dots stretching to
the right in the summary plot (Figure 4A right). This trend of rare high magnitude effects is present across
many of the features, and always stretches to the right. This reflects the fact that there are many ways to die
abnormally early when medical measurements are out of range, but there not many ways to live abnormally
longer (since there are no long tails stretching to the left). Summary plots combine many local explanations
to provide a more detailed global picture of the model than a traditional list of global feature importance
values. In many cases this more detailed view can provide useful insights, as demonstrated in our medical
datasets (Figure 4A, Supplementary Figures 16 and 17).

6 Feature dependence experiments
Here we describe in more detail the feature dependence results. Just as summary plots provide richer
information than traditional measures of global feature importance (Figure 4A), dependence plots based on
SHAP values can provide richer information than traditional partial dependence plots by combining the local
importance of a single feature across many samples (Figure 4B-G). Plotting a feature’s value on the x-axis vs.
the feature’s SHAP value on the y-axis produces a SHAP dependence plot that shows how much that feature
impacted the prediction of every sample in the dataset.

For the mortality model a SHAP dependence plot reproduces the standard risk inflection point known for
systolic blood pressure between 120 mmHg and 140 mmHg [23] (Figure 4B). This highlights the value of a
flexible model that is able to capture non-linear patterns, and also shows how interaction effects can have a
significant impact on a feature. Standard partial dependence plots capture the general trends, but do not
provide any information about the heterogeneity present within people that have the same measured systolic
blood pressure (Supplementary Figure 10). Each dot in a SHAP dependence plot represents a person, and
the vertical dispersion of the dots is driven by interaction effects with other features in the model. Many
different individuals have a recorded blood pressure of 180 mmHg in the mortality dataset, but the impact
that measurement has on their log-hazard ratio varies from 0.2 to 0.6 because of other factors that differ
among these individuals. We can color by another feature to better understand what drives this vertical
dispersion. Coloring by age in Figure 4B explains most of the dispersion, meaning that early onset high blood

13

pressure is more concerning to the model than late onset high blood pressure.
For the chronic kidney disease (CKD) model a SHAP dependence plot again clearly reveals the previously

documented non-linear inflection point for systolic blood pressure risk, but in this dataset the vertical
dispersion from interaction effects appears to be partially driven by differences in blood urea nitrogen
(Figure 4E). Correctly modeling blood pressure risk is important, since blood pressure control in select CKD
populations may delay progression of kidney disease and reduce the risk of cardiovascular events. Lower blood
pressure has been found to slow progression of CKD and decrease overall cardiovascular mortality in some
studies [67, 52, 60, 48, 57, 5]. For example, long-term follow-up of the Modification of Diet in Renal Disease
(MDRD) study suggested that lower systolic blood pressure led to improved kidney outcomes in patients
with CKD [57]. The SPRINT trial, which randomized patients to treatment to systolic blood pressure <120
vs. <140 mmHg found that treatment to lower systolic blood pressure was associated with lower risk of
cardiovascular disease; though no difference was seen in rates of CKD progression between the treatment
groups [23, 11].

7 Interaction effect experiments
Here we describe in more detail the interaction effect results. Using SHAP interaction values we can decompose
the impact of a feature on a specific sample into interaction effects with other features. SHAP interaction
values allow pairwise interaction effects to be measured at an individual sample level. By combining many
such samples we can then observe patterns of interaction effects across a dataset.

In the mortality dataset, we can compute the SHAP interaction values for every sample and then
decompose the systolic blood pressure dependence plot to get the (symmetric) SHAP interaction value of
systolic blood pressure and age. Interaction effects are visible in dependence plots through vertical dispersion
of the samples, and coloring can often highlight patterns likely to explain this dispersion, but it is necessary
to compute the SHAP interaction values to confirm the causes of vertical dispersion. In the systolic blood
pressure dependence plot from the mortality model the vertical dispersion is primarily driven by an interaction
with age (Figure 4D), as suggested by the original coloring (Figure 4B).

Plotting interaction values can reveal interesting relationships picked up by complex tree-ensemble models
that would otherwise be hidden, such as the interaction effect between age and sex described in the main
text results. In the chronic kidney disease model an interesting interaction effect is observed between ‘white
blood cells’ and ‘blood urea nitrogen’ (Figure 4F). This means that high white blood cell counts are more
concerning to the model when they are accompanied by high blood urea nitrogen. Recent evidence has
suggested that inflammation may be an important contributor to loss of kidney function [6, 17]. While there
are numerous markers of inflammation, white blood cell count is one of the most commonly measured clinical
tests available, and this interaction effect supports the notion that inflammation may interact with high blood
urea nitrogen to contribute to faster kidney function decline.

8 Model monitoring experiments
Here we describe in more detail the model monitoring results. Deploying machine learning models in practice
is challenging because they depend on a large range of input features, any of which could change after
deployment and lead to degraded performance. Finding problems in deployed models is difficult because
the result of bugs is typically not a software crash, but rather a change in an already stochastic measure of
prediction performance. It is hard to determine when a change in a model’s performance is due to a feature
problem, an expected generalization error, or random noise. Because of this, many bugs in machine learning
pipelines can go undetected, even in core software at top tech companies [70].

A natural first step when debugging model deployments is to identify which features are causing problems.
Computing the SHAP values of a model’s loss function directly supports this by decomposing the loss among
the model’s input features. This has two important advantages over traditional model loss monitoring: First,
it assigns blame directly to the problematic features so that instead of looking at global fluctuations of
model performance, one can see the impact each feature has on the performance. Second, by focusing on
individual features we have higher power to identify problems that would otherwise be hidden in all the other

14

fluctuations of the overall model loss. Improving our ability to monitor deployed models is an important part
of enabling the safe use of machine learning in medicine.

To simulate a model deployment we used the hospital procedure duration prediction dataset. It contains
four years of data from two large hospitals. We used the first year of data for training and ran the model on
the next three years of data to simulate a deployment. This is a simple batch prediction task, and so is far
less prone to errors than actual real-time deployments, yet even here we observed dataset issues that had not
been previously detected during data cleaning (Figure 5).

Figure 5A shows the smoothed loss of the procedure duration model over time, and represents the type of
monitoring used widely in industry today. There is a clear increase in the model’s error once we switch to
the test set, which was expected; then there are short spikes in the error that are hard to differentiate from
random fluctuations. To test the value of using monitoring plots based on local explanations we intentionally
swapped the labels of operating rooms 6 and 13 two-thirds of the way through the dataset. This is meant to
represent the type of coding change that can often happen during active development of a real-time machine
learning pipeline. In the overall loss of the model’s predictions, two-thirds of the way through there is no
indication that a problem has occurred (Figure 5A), which means this type of monitoring would not be able
to catch the issue. In contrast, the SHAP monitoring plot for the room 6 feature clearly shows when the room
labeling error begins (Figure 5B). The y-axis of the SHAP monitoring plot is the impact of the room 6 feature
on the loss. About two-thirds of the way through the data there is a clear shift from negative values (meaning
using the feature helps accuracy) to positive values (meaning using the feature hurts accuracy). The impact
on accuracy is substantial, but because procedures occurring in room 6 and 13 are just a small fraction of the
overall set of procedures, the increased error is invisible when looking at the overall loss (Figure 5A).

In addition to finding our intentional error, SHAP monitoring plots also revealed problems that were
already present in the dataset. Two of these are shown Figure 5C and D.

In Figure 5C we can see a spike in error for the general anesthesia feature shortly after the deployment
window begins. This spike represents a transient configuration issue in our hospital revealed by a SHAP
monitoring plot. It corresponds to a subset of procedures from a single hospital where the anesthesia type
data field was left blank. After going back to the hospital system we found that this was due to a temporary
electronic medical record configuration issue whereby the link between the general anesthesia induction note
and the anesthesia type got broken. This prevented the anesthesia type data field from being auto-populated
with “general anesthesia” when the induction note was completed. This is exactly the type of configuration
issue that impacts machine learning models deployed in practice, and so needs to be detected during model
monitoring.

In Figure 5D there is an example, not of a processing error, but of feature drift over time. The atrial
fibrillation feature denotes if a patient is undergoing an atrial fibrillation ablation procedure. During the
training period, and for some time into deployment, using the atrial fibrillation feature lowers the loss. But
then over the course of time the feature becomes less and less useful until it begins hurting the model by the
end of the deployment window. Based on the SHAP monitoring plot for atrial fibrillation we went back to
the hospital to determine possible causes. During an atrial fibrillation ablation, the goal is to electrically
isolate the pulmonary veins of the heart using long catheters placed from the groin area. Traditionally, the
procedure was completed with a radiofrequency ablation catheter delivering point-by-point lesions to burn the
left atrium around the pulmonary veins. During the deployment window, the hospital began to use the second
generation cryoballoon catheter (Arctic Front Advance, Medtronic Inc., Minneapolis, MN), which freezes
the tissue and has been demonstrated to have a shorter procedure duration compared to radiofrequency
ablation [34]. At the same time, there were improvements in radiofrequency ablation catheter technology
including the use of contact force sensing which allowed the operator to determine how strongly the catheter
was touching the left atrial wall. This technology ensures that ablation lesions are delivered with enough
force to create significant lesion size. With noncontact force catheters, the operator may think the catheter
is touching the atrial wall but it may, in actuality, simply be floating nearby. Contact force sensing is also
associated with shorter procedure times [40, 32]. Cryoballoon versus radiofrequency ablation is chosen based
on patient characteristics and physician preference. Lastly, during this time there were staffing changes
including the use of specialized electrophysiology technologists which decreased procedural preparation time.
All of these changes led to a significant decrease in atrial fibrillation ablation procedural and in-room time
during the test period (Supplementary Figure 11), which translated into high model error attributable to
the atrial fibrillation feature. We quantified the significance of the SHAP monitoring plot trend using an

15

independent t-test between atrial fibrillation ablation procedures that appear in the first 30,000 samples
of the test time period vs. those that appear in the last 60,000 samples of the test time period. This lead
to a P-value of 5.4× 10−19. The complexity of the reasons behind the feature drift in Figure 5D illustrate
why it is so difficult to anticipate how assumptions depended on by a model might break in practice. Using
SHAP values to monitor the loss of a model allow us to retroactively identify how model assumptions may be
changing individually for each input feature, even if we cannot a priori anticipate which features are likely to
cause problems.

Explaining the loss of a model is not only useful for monitoring over time, it can also be used in dependence
plots to understand how a specific feature helps improve model performance. For hospital procedure duration
prediction we can plot the dependence between the time of the day feature and it’s impact on the model’s
output. The time of day feature indicates when a procedure started, and is particularly effective at reducing
the model’s loss just after 7:30am and 8:30am in the morning (Supplementary Figure 20). These two times
are when long-running elective surgeries are scheduled in this hospital system, so the dependence plot reveals
that the model is using the time of the day to detect routine long-running surgeries.

Current practice is to monitor the overall loss of the model, and also potentially monitor the statistics of
the features for changes over time. This is problematic because just monitoring the overall loss of the model
can hide many important problems, while monitoring the changes in the statistics of features is essentially an
unsupervised anomaly detection problem that is prone to both false positives and false negatives. Swapping
the names of operating rooms that are used equally often would be invisible to such an unsupervised method.
By directly attributing the loss to the features we can highlight precisely which features are impacting the
loss and by how much. When changes show up in the monitoring plot, those changes are in the units of
the model’s loss and so we can quantify how much it is impacting our performance. These monitoring
plots represent a compelling way that many local explanations can be combined to provide richer and more
actionable insights into model behavior than the current state of the art.

9 Local explanation embedding experiments
Here we describe in more detail the local explanation embedding results. There are two challenges with
standard unsupervised clustering methods: 1) The distance metric does not account for the discrepancies among
the units and meaning of features (e.g., units of years vs. units of cholesterol), and simple standardization is
no guarantee the resulting numbers are comparable. 2) Even after a distance metric is defined, there is no
way for an unsupervised approach to know which features are relevant for an outcome of interest, and so
should be weighted more strongly. Some applications might seek to cluster patients by groups relating to
kidney disease, and another by groups relating to diabetes. But given the same feature set, unsupervised
clustering will give the same results in both cases.

We can address both of the above problems in traditional unsupervised clustering by using local explanation
embeddings to embed each sample into a new “explanation space.” If we then run clustering in this new space,
we will get a supervised clustering where samples are grouped together that have the same model output
for the same reason. Since SHAP values have the same units as the model’s output they are all comparable
within a model, even if the original features were not comparable. Supervised clustering naturally accounts for
the differing scales of different features, only highlighting changes that are relevant to a particular outcome.
Running hierarchical supervised clustering using the mortality model results in groups of people that share a
similar mortality risk for similar reasons (Figure 6A). The heatmap in Figure 6A uses the leaf order of a
hierarchical agglomerative clustering based on the SHAP values of each sample. On the left are young people,
in the middle are middle aged people, and on the right are older people. Within these broad categories many
smaller groups are of particular interest, such as people with early onset high-blood pressure, young people
with inflammation markers, and underweight older people. Each of these recapitulate known high risk groups
of people, which would not have been captured by a simple unsupervised clustering approach (Supplementary
Figure 12).

In addition to making explicit clusters, we can also use dimensionality reduction to directly visualize the
explanation space embedding produced by the SHAP values. This gives a continuous representation of the
primary directions of model output variation in the dataset. For the kidney disease dataset, the top two
principal components of the explanation embedding highlight two distinct risk factors for disease progression

16

(Figures 6B-D). The first principal component aligns with blood creatinine levels, which are used to compute
the estimated glomerular filtration rate (eGFR) of the kidneys. High levels of creatinine are a marker of
lower eGFR and are the primary test for detection of kidney disease. The second principal component aligns
with higher urine protein concentration in the urine. Quantified as the urine protein to urine creatinine
ratio (PCR), this is a marker of kidney damage and is used in conjunction with eGFR to quantify levels
of kidney disease. If we color the explanation space embedding by the risk of kidney disease progression,
there is a roughly continuous increase in risk from left to right (Figure 6B). This is largely explained by a
combination of the two orthogonal risk directions described above: One direction follows the blood creatinine
level feature (which determine the eGFR) (Figure 6C) and the other direction follows the urine protein
feature (Figure 6D). Several of the other top features in the chronic kidney disease model also align with these
two orthogonal embedding directions (Supplementary Figure 6B-D). It is well established that eGFR and
urine PCR are the strongest predictors of progression to end-stage renal disease among patients with chronic
kidney disease [43, 13]. Physiologically, eGFR and PCR are likely complimentary, yet distinct kidney disease
markers. Figure 6B-D shows that eGFR and PCR each identify unique individuals at risk of end-stage renal
disease; thus confirming that clinically they should be measured in parallel. This type of insight into the
overall structure of kidney risk is not at all apparent when just looking at a standard unsupervised embedding
(Supplementary Figure 14).

Supplementary Figures

17

Amount of non-linearity in the data

(A)

(B)

In
cr

ea
se

 fr
om

 2
-fe

at
ur

e
m

od
el

to
 a

ll-
fe

at
ur

e
m

od
el

.

Low risk

High risk

Ca
nc

el
la

tio
n

e�
ec

ts
du

e
to

 b
ia

s

Supplementary Figure 1: Poor weight allocation by linear models is driven by cancellation effects.
In the main text Figure 2C shows that as non-linearity increases in the true data generating distribution, a
linear model begins to put weight on irrelevant features. This figure demonstrates that the weight placed on
irrelevant features relies on complex cancellation effects, and is hence difficult to interpret. (B) For each
model type from Figure 2 we show two things: 1) The increase in the total attribution from the 2-feature
model to the all-feature model. If the total attribution changes then it means the output of the model is
changing when we include the irrelevant features (because the attributions sum up to the model’s output).
For both gradient boosting and logistic regression, the model output does not change when we include all
features. 2) The increase in the total absolute attribution from the 2-feature model to the all-feature model.
If the total absolute attribution changes more than total attribution then that implies there are cancellation
effects in the model. For gradient boosting there is no evidence of cancellation, whereas for linear logistic
regression there is a significant amount of cancellation as the amount of non-linearity in the function grows.

18

Amount of non-linearity in the data

(B)

(D)

(C)

%
 o

f w
ei

gh
t a

ss
ig

ne
d

to
 ir

re
le

va
nt

 fe
at

ur
es 15%

10%

5%

0%

Ex
pl

an
ab

ili
ty

 lo
st

du
e

to
 b

ia
s

Lo
g

lo
ss

 d
i�

er
en

ce
fr

om
 tr

ue
 m

od
el

Ac
cu

ra
cy

 lo
st

du
e

to
 b

ia
s

Low risk

High risk

Supplementary Figure 2: The improved interpretability of gradient boosted tree models vs. linear
models persists under regularization. In Figure 2 it is shown that gradient boosted tree models can
be more interpretable than linear models when the underlying data generating distribution is non-linear.
This is because in the presence of non-linearity linear models tend to place a lot of weight on irrelevant
features. This happens because these linear models are relying on complex cancellation effects to capture a
small amount of the non-linear behavior. One potential way to reduce un-interpretable cancellation effects to
use L1 regularization to encourage sparsity. This figure illustrates that even with optimal L1 penalization
(chosen by cross validation), significant weight is still placed on irrelevant features, and this is due to complex
cancellation effects (Supplementary Figure 3).

19

Amount of non-linearity in the data

(A)

(B)

In
cr

ea
se

 fr
om

 2
-fe

at
ur

e
m

od
el

to
 a

ll-
fe

at
ur

e
m

od
el

.

Low risk

High risk

Ca
nc

el
la

tio
n

e�
ec

ts
du

e
to

 b
ia

s
Supplementary Figure 3: Poor weight allocation by linear models is driven by cancellation effects
even under regularization. This is figure is identical to Supplementary Figure 1, but instead of an
unregularized linear model, the model is lasso regularized to encourage sparsity. The prevalence of cancellation
effects is only slightly reduced by regularization.

20

(A) (B)

(C) (D)

(E) (F)

1% of tenth most
important feature

1% of tenth most
important feature

Number of model evaluations (runtime)*Number of model evaluations (runtime)*

Es
tim

at
io

n
er

ro
r

(m
ax

 o
ve

r a
ll

fe
at

ur
es

)

Es
tim

at
io

n
er

ro
r

(m
ea

n
ov

er
 a

ll
fe

at
ur

es
)

 Explanation runtime (simulated data) Explanation variability (simulated data)

Explanation convergence (kidney data) Explanation convergence (kidney data)

Inconsistent explanations
of AND functions by Sabaas

Consistent explanations
of AND functions by Tree SHAP

*Using 105 evaluations it takes 1.8 CPU days to explain the chronic kidney disease dataset with SHAP values.
With SHAP interaction values it would take 3.3 CPU years.

Supplementary Figure 4: (A-B) TreeExplainer avoids the consistency problems of previous tree-
specific approaches. For tree models that represent a multi-way AND function the Saabas method
gives little credit to features near the root, while Tree SHAP evenly distributes credit among all the
features involved in the AND function. (C-F) TreeExplainer represents a dramatic performance
improvement over model agnostic approaches. All model agnostic approaches rely on sampling, so
their runtime is lower bounded by the run-time to evaluate the model, and they always have some sampling
variability. TreeExplainer’s Tree SHAP algorithm runs thousands of times faster, and has no sampling
variability since it is exact. We consider both the Kernel SHAP [39] and IME [64] model agnostic estimators
for Shapley values. (C-D) Using simulated data we can train XGBoost models over datasets of different sizes
and observe that the number of samples required to maintain estimates with constant variance grows linearly
with the number of features in the model. The reported runtime is a lower bound since it only accounts for
the time to execute the model, not execute the explanation method itself. (E-F) As we increase the number
of model evaluations used by model agnostic approaches we converge towards the exact solution. However,
achieving low variance estimates requires days or years of CPU time even on the smallest of our medical
datasets. We also only used a single background reference sample for computing conditional expectations in
the model agnostic methods (instead of an entire dataset) so these represent lower bounds on the runtime.
The estimation error on the y-axis represents the difference from the exact solution with a single background
reference sample. Details of the experimental setup for C-F are described in 4.

21

Fever

0

0 80

No Yes

No Yes

output = [Cough & Fever]*80 + [Cough]*10

output = [Cough & Fever]*80

0

10 90

No Yes

No Yes

Fever

Saabas

Tree SHAP

Model A

Model B

Model A Attributions

In
di

vi
du

al
iz

ed
(F

ev
er

 =
 y

es
, C

ou
gh

 =
 y

es
)

G
lo

ba
l

mean(|Tree SHAP|)

Gain Inconsistency

Inconsistency

Permutation

Fever Cough

Model B Attributions

Fever Cough

Supplementary Figure 5: Two simple tree models that demonstrate inconsistencies in the Saabas
and gain feature attribution methods. The Cough feature has a larger impact in Model B than Model
A, but is attributed less importance in Model B. Similarly, the Cough feature has a larger impact than Fever
in Model B, yet is attributed less importance. The individualized attributions explain a single prediction of
the model (when both Cough and Fever are Yes) by allocating the difference between the expected value of
the model’s output (20 for Model A, 25 for Model B) and the current output (80 for Model A, 90 for Model
B). Inconsistency prevents the reliable comparison of feature attribution values. The global attributions
represent the overall importance of a feature in the model. “Gain” is the most common way of measuring
feature importance in trees and is the sum of the reductions in loss that come from all splits using that
feature. “Permutation“ is the change in the model’s accuracy when a single feature is permuted.

22

Gradient Boosted Trees

Random Forest

Decision Tree

TreeExplainer (path dependent)
TreeExplainer (interventional)

TreeExplainer (path dependent)

TreeExplainer (interventional)

TreeExplainer (path dependent)
TreeExplainer (interventional)

Supplementary Figure 6: Explanation method performance across thirteen different evaluation
metrics and three regression models in a simulated dataset with 60 features divided into tightly
correlated groups. Each tile represents the performance of a feature attribution method on a given metric
for a given model. Within each model the columns of tiles are scaled between the minimum and maximum
value, and methods are sorted by their overall performance. Some of these metrics have been proposed before
and others are new quantitative measures of explanation performance that we are introducing (see Methods).

23

Gradient Boosted Trees

Random Forest

Decision Tree

TreeExplainer (path dependent)
TreeExplainer (interventional)

TreeExplainer (path dependent)
TreeExplainer (interventional)

TreeExplainer (path dependent)
TreeExplainer (interventional)

Supplementary Figure 7: Explanation method performance across thirteen different evaluation
metrics and three regression models in a simulated dataset with 60 independent features. Each
tile represents the performance of a feature attribution method on a given metric for a given model. Within
each model the columns of tiles are scaled between the minimum and maximum value, and methods are
sorted by their overall performance. Some of these metrics have been proposed before and others are new
quantitative measures of explanation performance that we are introducing (see Methods).

24

(path dependent)

(interventional)

Supplementary Figure 8: Shapley value based methods agree with human intuition. We measured
the most intuitive way to assign credit among input features by asking users to assign credit for predictions
from four simple models (three predictions per model). The consensus allocation observed from a user study
was then used as the ground truth and compared with the allocations given by different explanation methods.
The sum of absolute differences was used to quantify agreement. All the Shapley value based methods had
nearly perfect agreement across all the scenarios. The raw allocations for the cases where Saabas fails are
shown in Supplementary Figures 37-39 (7). Note that since these small (human understandable) models have
only three features, model agnostic Shapley methods are accurate and so comparable with TreeExplainer.

25

(A) (B)

Single decision tree
(minimum interactions)

Single decision tree
(product interactions)

(C)

Random forest with 10 trees
(product interactions)

(D)
Random forest with 10 trees

(minimum interactions)

Supplementary Figure 9: SHAP values can be combined to provide better feature selection power
than traditional approaches. Feature selection methods based on trees or ensembles of trees typically
either use the total gain (reduction in train error when splitting) or a permutation test (scramble each feature
and observe the change in error) to do feature selection. To compare feature selection power we reproduce
the same simulated independent features setting as [30] (but with strong 3rd order interactions) and compare
the mean SHAP value of the loss vs. mean SHAP value magnitude vs. gain vs. permutation for feature
selection. We also repeat the experiment replacing the product style interactions from [30] with minimum
functions. For both a single tree (A,C) and an ensemble of ten trees (B,D) the SHAP values provide a better
ranking of features. Perhaps because, unlike gain, they guarantee consistency as defined by Property 2, and
unlike permutations, they account for high-order interaction effects. The x-axis of the plots represents the
number of features used in the true model (out of 200 total features), while the y-axis represents the fraction
of those true features recovered in the set of top ranked features of the same size. Results are averages over
performance on 1000 simulated datasets. Both SHAP value based methods outperform gain and permutation
testing in every figure, with all paired t-test P-values being < 10−7.

26

80 100 120 140 160 180 200 220 240
Systolic blood pressure

1.4

1.6

1.8

2.0

2.2

2.4

Pa
rti

al
 d

ep
en

de
nc

e
of

Sy
st

ol
ic

bl
oo

d
pr

es
su

re

Supplementary Figure 10: Partial dependence plot of systolic blood pressure in the mortality
model. Unlike the corresponding SHAP dependence plot in Figure 4B, the partial dependence plot gives no
indication of the heterogeneity between individuals caused by interaction effects in the model.

2013 2014 2015 2016

Supplementary Figure 11: The average duration of ablation procedures for atrial fibrillation
dropped significantly during 2014. This data was obtained directly from the electrophysiology lab to
diagnose why the atrial fibrillation feature was found (using a SHAP monitoring plot) to degrade model
performance (Figure 5D). The reason is that around 2014 (which was after the simulated model deployment)
the duration of these procedures dropped significantly.

Supplementary Figure 12: A clustering of 14,264 mortality study individuals by their normalized
data values. Standard complete linkage hierarchical clustering reveals fewer groups consistency with model
risk than supervised clustering (Figure 6A). This is because unsupervised clustering has no bias towards
clusters that share common risk characteristics. Row-normalized feature SHAP values are used for coloring,
as in Figure 6A.

27

(A) (B) (C)

SHAP value of blood cystatin-C SHAP value of blood urea nitrogenSHAP value of urine protein

Supplementary Figure 13: A local explanation embedding of kidney visits projected onto its first
two principle components. This shows the next three top features beyond those shown in Figures 6B-D.
The fact that these features also align with the top principal components shows how many of the important
features in the data set are capturing information along two largely orthogonal dimensions.

= + + 331
other features

Log odds of end-stage renal disease within 4 years SHAP value of urine protein/creatinine ratio

(A) (B)

SHAP value of blood creatinine (determines eGFR)

(C)

Supplementary Figure 14: Principle component embedding of the chronic kidney disease dataset.
Unlike an embedding based in the local explanation space (Figures 6B-D), an unsupervised embedding of the
data does not necessarily align with the outcome of interest in a dataset.

Supplementary Figure 15: The Sabaas values, φsi , attribute feature importance by measuring differences in
conditional expectations along the order defined by the decision path. This is very similar to SHAP (SHapley
Additive exPlanation) values, φi, except SHAP values result from averaging over all possible orderings and use
interventional conditional expectations E[f(X) | do(Xs = xs)] [27]. Averaging over all possible orderings is
important since for non-linear functions the order in which features are introduced matters. Proofs from game
theory show that averaging over all orderings is the only possible consistent approach where

∑M
i=0 φi = f(x)

().

28

Global feature importance Local explanation summary

Supplementary Figure 16: Bar chart (left) and summary plot (right) for a gradient boosted
decision tree model trained on the chronic kidney disease data. For the summary plot red dots
indicate a high value of that feature for that individual, while blue dots represent a low feature value. The
x-axis is the SHAP value of a feature for each individual’s prediction, representing the change in the log-hazard
ratio caused by observing that feature. High blood creatinine increases the risk of end-stage kidney disease.
Conversely, low creatinine clearance increases the risk of end-stage kidney disease.

Global feature importance Local explanation summary

Supplementary Figure 17: Bar chart (left) and summary plot (right) for a gradient boosted
decision tree model trained on the hospital procedure duration data. For the summary plot red
dots indicate a high value of that feature for that individual, while blue dots represent a low feature value.
The x-axis is the SHAP value of a feature for each individual’s prediction, representing the change in the
log-hazard ratio caused by observing that feature. Many of the features are bag-of-words counts that have
only a few non-zero values. Because the model is very nonlinear, the impact of a flag being on (such as the
trauma flag) can have very different effects for different procedures (as shown for trauma by the horizontal
dispersion of the red dots).

29

All Pharmaceutical Marketing Finance Insurance Academia
Domain

SVMs
Bayesian Techniques

Neural Networks
Gradient Boosted Machines

Ensemble Methods

Decision Trees
Random Forests

Logistic Regression

M
od

el
 T

yp
e

20

30

40

50

60

70

80

%
 o

f D
at

a
Sc

ie
nt

ist
s W

ho
 U

se
 M

od
el

Statistics of Data Scientists on Kaggle, 2017

Supplementary Figure 18: Statistics from Kaggle’s “State of ML and Data Science” survey in 2017.
Tree-based models are the most popular non-linear models by a wide margin across many domains, including
the pharmaceutical industry. Percentages indicate what percent of self-identified “data scientists” in a given
field use a given method. Since data scientists may use many different methods, the percentages do not add
to 100.

Tabular Image Timeseries Text Video Audio
Dataset type

0

2

4

6

8

10

Nu
m

be
r o

f d
at

as
et

s i
n

al
l

pr
ed

ict
iv

e
m

od
el

in
g

pa
pe

rs

Statistics of Articles Published in NPJ Digital Medicine, Jan 1 - Sep 1 2019
Fraction of models per dataset type:
Other
Linear
Deep
Tree

Supplementary Figure 19: Prevalence of different model types among articles published in npj
Digital Medicine. For articles that involve prediction tasks, tabular and image data are most prevalent.
Trees are the most popular non-linear models for tabular data, while deep models are the most popular for
images. The height of each bar is the total number of papers using a particular dataset type. The shaded
area for a particular model type represents the proportion of papers in a category that used that model type,
normalized so that; for example, models from a paper using five model types only count as one-fifth as much
as models from a paper that uses a single model.

30

Supplementary Figure 20: A dependence plot for time of day vs the SHAP value of time of day
with respect to the model loss. In our hospital system long running elective surgeries are scheduled at
7:20-7:30 AM on Monday/Tuesday/Thursday/Friday and at 8:20-8:30 AM on Wednesday. This plot shows
that the primary way model is using time of day to reduce the model’s loss is by detecting these surgery
scheduling times. Each dot is a procedure, the x-axis is the time that procedure was scheduled to begin, and
the y-axis is the impact knowing the time of day had on the model’s loss for predicting that procedure’s
duration (lower is better).

31

(path dependent)

(interventional)

Supplementary Figure 21: Keep positive (mask) metric for a random forest trained on the chronic
kidney disease dataset. Sorting the attribution values of an explanation method provides an ordering of
the features for each prediction made by the model. Here we keep a fraction of the features ordered by how
much they increase the model’s output. Features that are not kept are masked with their mean value. If
the ordering is good, as we include more and more features we push the model’s output higher. Note that
features with a negative contribution are always masked. The x-axis is the maximum fraction of features
kept and the y-axis is the mean increase of the model over 100 predictions (averaged over 10 model’s trained
on different train/test splits of the dataset). Note that the Tree SHAP and Sampling SHAP algorithms
correspond to TreeExplainer and IME [64], respectively.

32

(path dependent)

(interventional)

Supplementary Figure 22: Keep positive (resample) metric for a random forest trained on the
chronic kidney disease dataset. This is just like Supplementary Figure 21 except that instead of masking
the hidden features with their mean value, we instead replace them with a random sample from the training
dataset. This resampling process is averaged over 100 times to integrate over the distribution of background
samples. If the input features are independent of one another then this effectively computes the conditional
expectation of the model output conditioned on only the observed features. Note that the Tree SHAP and
Sampling SHAP algorithms correspond to TreeExplainer and IME [64], respectively.

33

(path dependent)
(interventional)

Supplementary Figure 23: Keep negative (mask) metric for a random forest trained on the chronic
kidney disease dataset. This is just like Supplementary Figure 21 except that we keep the most negative
features instead of the most positive. Note that the Tree SHAP and Sampling SHAP algorithms correspond
to TreeExplainer and IME [64], respectively.

34

(path dependent)

(interventional)

Supplementary Figure 24: Keep negative (resample) metric for a random forest trained on the
chronic kidney disease dataset. This is just like Supplementary Figure 22 except that we keep the most
negative features instead of the most positive. Note that the Tree SHAP and Sampling SHAP algorithms
correspond to TreeExplainer and IME [64], respectively.

35

(path dependent)

(interventional)

Supplementary Figure 25: Keep absolute (mask) metric for a random forest trained on the chronic
kidney disease dataset. This is just like Supplementary Figures 21 and 23 except that we keep the most
important features by absolute value instead of the most positive or negative. Since this no longer specifically
pushes the model output higher or lower, we instead measure the accuracy of the model. Good attribution
methods will identify important features that when kept will result in better model accuracy, measured in
this case by the area under the receiver operating characteristic (ROC) curve. Note that the Tree SHAP and
Sampling SHAP algorithms correspond to TreeExplainer and IME [64], respectively.

36

(path dependent)

(interventional)

Supplementary Figure 26: Keep absolute (resample) metric for a random forest trained on the
chronic kidney disease dataset. This is just like Supplementary Figures 22 and 24 except that we keep
the most important features by absolute value instead of the most positive or negative (as in Figure 25). Note
that the Tree SHAP and Sampling SHAP algorithms correspond to TreeExplainer and IME [64], respectively.

37

(path dependent)
(interventional)

Supplementary Figure 27: Remove positive (mask) metric for a random forest trained on the
chronic kidney disease dataset. This is just like Supplementary Figure 21 except that we remove the
most positive features instead of keeping them. Note that the Tree SHAP and Sampling SHAP algorithms
correspond to TreeExplainer and IME [64], respectively.

38

(path dependent)

(interventional)

Supplementary Figure 28: Remove positive (resample) metric for a random forest trained on the
chronic kidney disease dataset. This is just like Supplementary Figure 22 except that we remove the
most positive features instead of keeping them. Note that the Tree SHAP and Sampling SHAP algorithms
correspond to TreeExplainer and IME [64], respectively.

39

(path dependent)

(interventional)

Supplementary Figure 29: Remove negative (mask) metric for a random forest trained on the
chronic kidney disease dataset. This is just like Supplementary Figure 23 except that we remove the
most negative features instead of keeping them. Note that the Tree SHAP and Sampling SHAP algorithms
correspond to TreeExplainer and IME [64], respectively.

40

(path dependent)

(interventional)

Supplementary Figure 30: Remove negative (resample) metric for a random forest trained on the
chronic kidney disease dataset. This is just like Supplementary Figure 24 except that we remove the
most negative features instead of keeping them. Note that the Tree SHAP and Sampling SHAP algorithms
correspond to TreeExplainer and IME [64], respectively.

41

(path dependent)

(interventional)

Supplementary Figure 31: Remove absolute (mask) metric for a random forest trained on the
chronic kidney disease dataset. This is just like Supplementary Figure 25 except that we remove the
most important features instead of keeping them. Note that the Tree SHAP and Sampling SHAP algorithms
correspond to TreeExplainer and IME [64], respectively.

42

(path dependent)

(interventional)

Supplementary Figure 32: Remove absolute (resample) metric for a random forest trained on the
chronic kidney disease dataset. This is just like Supplementary Figure 26 except that we remove the
most important features instead of keeping them. Note that the Tree SHAP and Sampling SHAP algorithms
correspond to TreeExplainer and IME [64], respectively.

Supplementary Figure 33: Consensus human intuition values for an AND function. Human consensus
values were measured by a user study over 33 participants for a simple AND-based function. The most
popular allocation was chosen as the consensus (7). The labels denote the allocation given by people as “fever
/ cough / headache”. The title gives the input values for sample being explained as “fever value/cough value”,
where ‘T’ is true and ‘F’ is false; note that headache is always set to true.

43

Supplementary Figure 34: Consensus human intuition values for an OR function. Human consensus
values were measured by a user study over 33 participants for a simple OR-based function. The most popular
allocation was chosen as the consensus (7). The labels denote the allocation given by people as “fever / cough
/ headache”. The title gives the input values for sample being explained as “fever value/cough value”, where
‘T’ is true and ‘F’ is false; note that headache is always set to true.

Supplementary Figure 35: Consensus human intuition values for an eXclusive OR (XOR) function.
Human consensus values were measured by a user study over 33 participants for a simple XOR-based function.
The most popular allocation was chosen as the consensus (7). The labels denote the allocation given by
people as “fever / cough / headache”. The title gives the input values for sample being explained as “fever
value/cough value”, where ‘T’ is true and ‘F’ is false; note that headache is always set to true.

44

Supplementary Figure 36: Consensus human intuition values for a SUM function. Human consensus
values were measured by a user study over 33 participants for a simple SUM function. The most popular
allocation was chosen as the consensus (7). The labels denote the allocation given by people as “fever / cough
/ headache”. The title gives the input values for sample being explained as “fever value/cough value”, where
‘T’ is true and ‘F’ is false; note that headache is always set to true.

45

(path dependent)

(interventional)

Supplementary Figure 37: Comparison with human intuition for an AND function. Human consensus
values were measured by a user study for a simple AND-based function evaluated when all inputs were set to
‘true’ (Supplementary Figure 33). The results of different explanation methods were then compared to these
consensus values to measure their consistency with human intuition (7).

46

(path dependent)

(interventional)

Supplementary Figure 38: Comparison with human intuition for an OR function. Human consensus
values were measured by a user study for a simple OR-based function evaluated when all inputs were set to
‘true’ (Supplementary Figure 34). The results of different explanation methods were then compared to these
consensus values to measure their consistency with human intuition (7).

47

(path dependent)

(interventional)

Supplementary Figure 39: Comparison with human intuition for an eXclusive OR (XOR) function.
Human consensus values were measured by a user study for a simple XOR-based function evaluated when all
inputs were set to ‘true’ (Supplementary Figure 35). The results of different explanation methods were then
compared to these consensus values to measure their consistency with human intuition (7).

48

References
[1] Marco Ancona et al. “Towards better understanding of gradient-based attribution methods for Deep

Neural Networks”. In: 6th International Conference on Learning Representations (ICLR 2018). 2018.

[2] Lidia Auret and Chris Aldrich. “Empirical comparison of tree ensemble variable importance measures”.
In: Chemometrics and Intelligent Laboratory Systems 105.2 (2011), pp. 157–170.

[3] Sebastian Bach et al. “On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance
propagation”. In: PloS one 10.7 (2015), e0130140.

[4] David Baehrens et al. “How to explain individual classification decisions”. In: Journal of Machine
Learning Research 11.Jun (2010), pp. 1803–1831.

[5] George L Bakris et al. “Effects of blood pressure level on progression of diabetic nephropathy: results
from the RENAAL study”. In: Archives of internal medicine 163.13 (2003), pp. 1555–1565.

[6] Benjamin Bowe et al. “Association between monocyte count and risk of incident CKD and progression
to ESRD”. In: Clinical Journal of the American Society of Nephrology 12.4 (2017), pp. 603–613.

[7] Leo Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32.

[8] Leo Breiman et al. Classification and regression trees. CRC press, 1984.

[9] S Chebrolu, A Abraham, and J Thomas. “Feature deduction and ensemble design of intrusion detection
systems”. In: Computers & security 24.4 (2005), pp. 295–307.

[10] Tianqi Chen and Carlos Guestrin. “XGBoost: A scalable tree boosting system”. In: Proceedings of the
22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. 2016,
pp. 785–794.

[11] Alfred K Cheung et al. “Effects of intensive BP control in CKD”. In: Journal of the American Society
of Nephrology 28.9 (2017), pp. 2812–2823.

[12] François Chollet et al. Keras. https://github.com/fchollet/keras. 2015.

[13] Chronic Kidney Disease Prognosis Consortium et al. “Association of estimated glomerular filtration
rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a
collaborative meta-analysis”. In: The Lancet 375.9731 (2010), pp. 2073–2081.

[14] Christine S Cox et al. “Plan and operation of the NHANES I Epidemiologic Followup Study, 1992”. In:
(1997).

[15] Anupam Datta, Shayak Sen, and Yair Zick. “Algorithmic transparency via quantitative input influence:
Theory and experiments with learning systems”. In: Security and Privacy (SP), 2016 IEEE Symposium
on. IEEE. 2016, pp. 598–617.

[16] Cameron Davidson-Pilon. Lifelines. https://github.com/camdavidsonpilon/lifelines. 2016.

[17] Fangfang Fan et al. “White blood cell count predicts the odds of kidney function decline in a Chinese
community-based population”. In: BMC nephrology 18.1 (2017), p. 190.

[18] Jing Fang and Michael H Alderman. “Serum uric acid and cardiovascular mortality: the NHANES I
epidemiologic follow-up study, 1971-1992”. In: Jama 283.18 (2000), pp. 2404–2410.

[19] Ruth C Fong and Andrea Vedaldi. “Interpretable explanations of black boxes by meaningful perturbation”.
In: Proceedings of the IEEE International Conference on Computer Vision. 2017, pp. 3429–3437.

[20] Jerome H Friedman. “Greedy function approximation: a gradient boosting machine”. In: Annals of
statistics (2001), pp. 1189–1232.

[21] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning. Vol. 1.
Springer series in statistics Springer, Berlin, 2001.

[22] Robin Genuer, Jean-Michel Poggi, and Christine Tuleau-Malot. “Variable selection using random forests”.
In: Pattern Recognition Letters 31.14 (2010), pp. 2225–2236.

[23] SPRINT Research Group. “A randomized trial of intensive versus standard blood-pressure control”. In:
New England Journal of Medicine 373.22 (2015), pp. 2103–2116.

49

[24] Patrick J Heagerty, Thomas Lumley, and Margaret S Pepe. “Time-dependent ROC curves for censored
survival data and a diagnostic marker”. In: Biometrics 56.2 (2000), pp. 337–344.

[25] A Irrthum, L Wehenkel, P Geurts, et al. “Inferring regulatory networks from expression data using
tree-based methods”. In: PloS one 5.9 (2010), e12776.

[26] Hemant Ishwaran et al. “Variable importance in binary regression trees and forests”. In: Electronic
Journal of Statistics 1 (2007), pp. 519–537.

[27] Dominik Janzing, Lenon Minorics, and Patrick Blöbaum. “Feature relevance quantification in explainable
AI: A causality problem”. In: arXiv preprint arXiv:1910.13413 (2019).

[28] Kaggle. The State of ML and Data Science 2017. 2017. url: https://www.kaggle.com/surveys/2017.
[29] Jared L Katzman et al. “DeepSurv: personalized treatment recommender system using a Cox proportional

hazards deep neural network”. In: BMC medical research methodology 18.1 (2018), p. 24.
[30] Jalil Kazemitabar et al. “Variable Importance using Decision Trees”. In: Advances in Neural Information

Processing Systems. 2017, pp. 426–435.
[31] Kidney Disease Statistics for the United States. 2018. url: https://www.niddk.nih.gov/health-

information/health-statistics/kidney-disease.
[32] Masaomi Kimura et al. “Comparison of lesion formation between contact force-guided and non-guided

circumferential pulmonary vein isolation: a prospective, randomized study.” In: Heart rhythm 11.6
(June 2014), pp. 984–91. issn: 1556-3871. doi: 10.1016/j.hrthm.2014.03.019. url: https:
//linkinghub.elsevier.com/retrieve/pii/S1547527114003002%20http://www.ncbi.nlm.nih.
gov/pubmed/24657428.

[33] Pieter-Jan Kindermans et al. “Learning how to explain neural networks: PatternNet and PatternAttri-
bution”. In: arXiv preprint arXiv:1705.05598 (2017).

[34] Karl-Heinz Kuck et al. “Cryoballoon or Radiofrequency Ablation for Paroxysmal Atrial Fibrillation”.
In: New England Journal of Medicine 374.23 (June 2016), pp. 2235–2245. issn: 0028-4793. doi:
10.1056/NEJMoa1602014. url: http://www.nejm.org/doi/10.1056/NEJMoa1602014.

[35] James P Lash et al. “Chronic Renal Insufficiency Cohort (CRIC) Study: baseline characteristics and
associations with kidney function”. In: Clinical Journal of the American Society of Nephrology 4.8
(2009), pp. 1302–1311.

[36] Lenore J Launer et al. “Body mass index, weight change, and risk of mobility disability in middle-aged
and older women: the epidemiologic follow-up study of NHANES I”. In: Jama 271.14 (1994), pp. 1093–
1098.

[37] Stan Lipovetsky and Michael Conklin. “Analysis of regression in game theory approach”. In: Applied
Stochastic Models in Business and Industry 17.4 (2001), pp. 319–330.

[38] Gilles Louppe. “Understanding random forests: From theory to practice”. In: arXiv preprint arXiv:1407.7502
(2014).

[39] Scott M Lundberg and Su-In Lee. “A Unified Approach to Interpreting Model Predictions”. In: Advances
in Neural Information Processing Systems 30. 2017, pp. 4768–4777. url: http://papers.nips.cc/
paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf.

[40] Eloi Marijon et al. “Real-time contact force sensing for pulmonary vein isolation in the setting of
paroxysmal atrial fibrillation: procedural and 1-year results.” In: Journal of cardiovascular electro-
physiology 25.2 (Feb. 2014), pp. 130–7. issn: 1540-8167. doi: 10.1111/jce.12303. url: http:
//doi.wiley.com/10.1111/jce.12303%20http://www.ncbi.nlm.nih.gov/pubmed/24433324.

[41] Yasuko Matsui and Tomomi Matsui. “NP-completeness for calculating power indices of weighted majority
games”. In: Theoretical Computer Science 263.1-2 (2001), pp. 305–310.

[42] Kunihiro Matsushita et al. “Comparison of risk prediction using the CKD-EPI equation and the MDRD
study equation for estimated glomerular filtration rate”. In: Jama 307.18 (2012), pp. 1941–1951.

[43] Kunihiro Matsushita et al. “Estimated glomerular filtration rate and albuminuria for prediction of
cardiovascular outcomes: a collaborative meta-analysis of individual participant data”. In: The lancet
Diabetes & endocrinology 3.7 (2015), pp. 514–525.

50

[44] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. “Methods for interpreting and under-
standing deep neural networks”. In: Digital Signal Processing 73 (2018), pp. 1–15.

[45] Paula F Orlandi et al. “Hematuria as a risk factor for progression of chronic kidney disease and death:
findings from the Chronic Renal Insufficiency Cohort (CRIC) Study”. In: BMC nephrology 19.1 (2018),
p. 150.

[46] Feng Pan et al. “Feature selection for ranking using boosted trees”. In: Proceedings of the 18th ACM
conference on Information and knowledge management. ACM. 2009, pp. 2025–2028.

[47] Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python”. In: Journal of machine learning
research 12.Oct (2011), pp. 2825–2830.

[48] H Mitchell Perry Jr et al. “Early predictors of 15-year end-stage renal disease in hypertensive patients”.
In: Hypertension 25.4 (1995), pp. 587–594.

[49] Gregory Plumb, Denali Molitor, and Ameet S Talwalkar. “Model agnostic supervised local explanations”.
In: Advances in Neural Information Processing Systems. 2018, pp. 2515–2524.

[50] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Anchors: High-precision model-agnostic
explanations”. In: AAAI Conference on Artificial Intelligence. 2018.

[51] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why should i trust you?: Explaining the
predictions of any classifier”. In: Proceedings of the 22nd ACM SIGKDD. ACM. 2016, pp. 1135–1144.

[52] Steven J Rosansky et al. “The association of blood pressure levels and change in renal function in
hypertensive and nonhypertensive subjects”. In: Archives of internal medicine 150.10 (1990), pp. 2073–
2076.

[53] Alvin E Roth. The Shapley value: essays in honor of Lloyd S. Shapley. Cambridge University Press,
1988.

[54] A. Saabas. treeinterpreter Python package. url: https://github.com/andosa/treeinterpreter.
[55] Wojciech Samek et al. “Evaluating the visualization of what a deep neural network has learned”. In:

IEEE transactions on neural networks and learning systems 28.11 (2016), pp. 2660–2673.
[56] Marco Sandri and Paola Zuccolotto. “A bias correction algorithm for the Gini variable importance

measure in classification trees”. In: Journal of Computational and Graphical Statistics 17.3 (2008),
pp. 611–628.

[57] Mark J Sarnak et al. “The effect of a lower target blood pressure on the progression of kidney disease:
long-term follow-up of the modification of diet in renal disease study”. In: Annals of internal medicine
142.5 (2005), pp. 342–351.

[58] Lloyd S Shapley. “A value for n-person games”. In: Contributions to the Theory of Games 2.28 (1953),
pp. 307–317.

[59] Avanti Shrikumar et al. “Not Just a Black Box: Learning Important Features Through Propagating
Activation Differences”. In: arXiv preprint arXiv:1605.01713 (2016).

[60] Neil B Shulman et al. “Prognostic value of serum creatinine and effect of treatment of hypertension
on renal function. Results from the hypertension detection and follow-up program. The Hypertension
Detection and Follow-up Program Cooperative Group.” In: Hypertension 13.5 Suppl (1989), p. I80.

[61] Jost Tobias Springenberg et al. “Striving for simplicity: The all convolutional net”. In: arXiv preprint
arXiv:1412.6806 (2014).

[62] Carolin Strobl et al. “Bias in random forest variable importance measures: Illustrations, sources and a
solution”. In: BMC bioinformatics 8.1 (2007), p. 25.

[63] C Strobl et al. “Conditional variable importance for random forests”. In: BMC bioinformatics 9.1 (2008),
p. 307.

[64] Erik Štrumbelj and Igor Kononenko. “Explaining prediction models and individual predictions with
feature contributions”. In: Knowledge and information systems 41.3 (2014), pp. 647–665.

[65] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic attribution for deep networks”. In: arXiv
preprint arXiv:1703.01365 (2017).

51

[66] Navdeep Tangri et al. “Multinational assessment of accuracy of equations for predicting risk of kidney
failure: a meta-analysis”. In: Jama 315.2 (2016), pp. 164–174.

[67] W Gordon Walker et al. “Renal function change in hypertensive members of the Multiple Risk Factor
Intervention Trial: racial and treatment effects”. In: JAMA 268.21 (1992), pp. 3085–3091.

[68] F Perry Wilson et al. “Urinary creatinine excretion, bioelectrical impedance analysis, and clinical
outcomes in patients with CKD: the CRIC study”. In: Clinical Journal of the American Society of
Nephrology 9.12 (2014), pp. 2095–2103.

[69] Matthew D Zeiler and Rob Fergus. “Visualizing and understanding convolutional networks”. In: European
conference on computer vision. Springer. 2014, pp. 818–833.

[70] Martin Zinkevich. Rules of Machine Learning: Best Practices for ML Engineering. 2017.

52

